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Abstract: Photoproduction of neutral pions on protons is analyzed in terms of models
involving exchange of the w Regge pole and Regge cuts due to w pole plus the pom-
eron. The differential cross section in a wide range of energies and the asymme-
try ratio are well accounted with a small number of free parameters.

1. INTRODUCTION

One of the most important cases in favour of Regge cuts is the photopro-
duction of neutral pions or protons. In Regge pole analysis this is dominated
by exchange of the w trajectory @y (¢). Standard reggeization implies that
the differential cross section must show a dip at @, = 0; this is indeed ob-
served at ¢ =-0.6 GeV2 at relatively low photon lab. momenta (&, < 6 GeV)
(refs.[1,2]). However, at higher energy this dip completely disappears [2].
Simple Regge pole models, consisting of w plus some lower-lying trajec-
tory, predict a dip more pronounced with increasing energy. Thus we
should seek a different picture.

We consider models consisting of the w Regge pole plus a series of com-
plex angular momentum (J) branch points a,,(¢) formed by exchange of w
plus # pomerons. The branch point due to exchange of w plus one pomeron
of trajectory ap(#) is given by [3]

@1(t) = max{a (') +a p(")- 1}, (1.1)

1 1 1
where t', " < 0 and (-£')2 + (-¢")2 < (-£)2 (¢ < 0); etc. In the linear tra-
jectory approximation

a,@) =ad+ryt, apl)=1+rpt, (1.2)
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which is expected to be valid in the region of interest (0 <-¢ < 1.2),
Eq. (1.1) is easily seen to lead to
-1 -1 -1

a,(t) = ag Fhgt, A=A ey (1.3)
Thus, e.g. for ¢ = -0.6: a,(f) >a(f). This implies that with increasing
energy the Regge cuts dominate over the w pole. With the dip at £ = -0.6
associated with zeros in the w residues and with the cuts contributing a

smooth, non-vanishing function of ¢, it is easily seen that at sufficiently
high energy the dip must disappear.

2. STRUCTURE OF THE MODEL

Since in our approach the dip is related to nonsense factors, it is sim-
pler to proceed via #-channel helicity amplitudes fA.yh TN (¢, cos gy).

Following standard procedures [4], we define parity conserving ones fgu
where A=A, - A, p=AyN-2Agand 0= +(-) denotes natural (unnaturalzr
parity. The w pole, which provides the driving force, contributes to fOl
and f;' 1 with
-1, -+ Lir cay(B-1
&0 73560 = 59,0 = 5,0 9T, 2

where the energy scale has been chosen, as usual, s, =1 GeV2 and

- 2 _ 2
Kot) =t-u®, Ky(6) =¢32(@-0%,
(1 = pion mass). With the kinematic factors Kx(t) taken out, bk(t) are anal-
ytic functions in the #-plane cut along 9u2 S f <o,

The functions b, (¢) vanish when @ ,(¢) crosses the integers J =0, -2,...;
they may vanish also atJ = -1, -3,... We shall take

by(t) = 'yo(ao + A t)1 + ag + Awt)(z +a£ + Ay (2.2a)

(70 = const.) Analyticity and factorization requirements for the w pole [5]
imply b1 ~ £ as £ — 0, so that

bl(t) = 'ylt(ao +A, 1 + acoo +A, EN2 + ag +A,t) . (2.2b)

The constants Yo and ¥1 are, in general, free. However, the ratio 71/7’0
can roughly be estimated from Regge pole analysis of NN — NN, where w
contributes significantly; and ref.[6] gives 1 $ v1/¥, < 3. Then assuming
vector dominance, we can calculate, say, Yo from the w-exchange contri-
bution to 7N — pN {7]. o

To calculate the cut contribution to fy , notice first that for [#| <1 the
amplitude for pomeron exchange can well be written neglecting spin:
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f(P)(S, t) =t (e-%i” s)aP(t') ¢ = real const. . (2.3)

Next we use methods developed in Regge cut models for elastic N-N and 7-N
scattering [8,9]. For (2.3) we introduce the Hankel transform:

FPho,6) = [ 7®)s,-q%) 7 (b) g o (2.4)
(o]

(¢t = _q2) and for (2.1):

F&w)(b, s)=/[ f;(w)(s,-qz) Jo(bg) q dg . (2.5)
[o]

c
The contribution fkl of the first cut (w + P) will be given by the Hankel
transform

£, 8) = 2ap waiw)(b,s) F®o, )7 (v0) b b . (2.6)
On the other hand, by writi:g
Fiets(s, 1 - f F%,5) «2eF® ) J(bg) b b . (2.7)
and expanding
-2 Lo
n-1 ™

we construct an infinite series of cuts (in accord with models of field theory
or s-channel unitary iterations of Regge poles). As we shall show, these
cuts have all the properties established in exphclt dynamical models.

In yN — 7N it is well known that, at ¢ = 0, f 11 and fo1 satisfy a kinemat-
ical constraint (conspiracy relation). Introducmg

Folsrt) = 3 - an?)72 - D7 (s, (2.8)

we reduce this constraint in the form
Fs.0 = @7 £1(s,0) . (2.9)
In contrast to a Regge pole which asymptotically contributes to helicity am-

plitudes with definite o (= + or -) a Regge cut contributes to both ¢ = + and
o = -. In view of (2.2b), fif(w) (s,0) = 0, so that (2.9) requires

£ols,0) = 22! £ 75,0 . (2.10)
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This relation introduces some unnatural (¢ = -) parity exchange without
extra parameters.

3. REGGE CUT CONTRIBUTIONS

In phenomenological applications for -¢ <1 GeV2 the w Regge pole con-
tribution can well be approximated by keeping only the first parenthesis
(ag + Apt) in (2.2). At very high energy (%, < 15 GeV) the same holds for
the cut contributions constructed as in (2.6) or (2.7). Here, however, we
want to account for detailed experimental information (including data with
polarized photons) which extends to rather low energies (2.8 < k.y < 16).
Even down to &, = 2.8 we find that fieuts)(s, ¢) is not sensitive to the exact
form of (2.2a); and that it is sufficient to use:

(w) 0 2, -dir \au(-g2)-1
F, ®,s) =7, J (aw - 2yg9) (€72 s) J(bg) q dg . (8.1a)
o
+(cuts)
However, for &, < 15, f (s,?) is sensitive to the exact form of (2.2b).

Thus we shall use the following simple parametrization
[~ ] 1.
- -g°)-1 :
F(lw)(b,s) =-v, [ ) -pgP)(e i orol-0?) Jo(bg) g dg  (3.1b)
o

where A = free parameter.
The Hankel transforms (3.1) can be calculated explicitly to give [10]:

() “ir a,-1..-2 -b2/62 o 1 2,2

FO (B,8) =y, (€2 s)"W " 26, e w {aw '_p‘Ll ®"/6,)} , (3.2a)

L 2,2

F,5) = v, (5% 2o, /00
(3.2b)

0o 2,2 -
{300 L, (6%/63) - A(30) 2 Ly 6%/62)}
where

p=Ins - 3in, 93, = 4px,, (3.3)

2,2
and L,,(6"/6,), m =1,2, are the Laguerre functions of order m.
We shall proceed with the general model of an infinite series of cuts.
Replacing (3.2) in (2.7) and using the transform [10]

[~ o]

-pb2 2, _(B-a)" -4%/48 aq?
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we obtain

+(cuts)( 1) = v, Enl (_§_) A {a -1

2 1)} (€75 5B (3.40)

w" phP

f;(cuts)(s’ 1) = -7 Z; 'an ( ) (A—:.)z‘%

2nx A
{ag, Ly(z,) - g, —~—— La(z,)} (e 2T @)1 (5 4

where a,(¢) as in (1.3) and

Zn = htnpm . (3.5)
For |¢| <1 and the energies of interest, |z, | <1 and (3.4) can be simpli-
fied by taking L,,(z,) ~ 1.

In the linear trajectory approximation the interpretation of the various
terms in the series (3.4a) via singularities in complex J is straightforward:
First, the exponent o (t) gives exactly the pogition of a moving branch
point due to exchange of w plus n pomerons. Also, the factor exp(-zim a,(¢)
correctly establishes the asymptotic phase of the corresponding cut [11].
Finally, it is known that as the number of the exchanged pomerons in-
creases, the cuts contain decreasing powers of In s - 3i7. In view of
L,(zp) =1 + 2y, to each order x the terms

2
(o] m‘n o n)tn _)lz_
A

a, - pA l(z ) =a, -‘KB - (3.6)

can be interpreted as superposition of 3 cuts with different discontinuities
near the branch point J = an(t). Clearly, a similar interpretation holds for
(3.4b).

In the series (3.4) as well as in similar expansions in NN — NN and
N — 7N (refs. [8,9]) the power # of the real parameter ¢ equals the number
of pomerons contributing to the branch point at J = @, (¢); thus it is reason-
able to consider £ as an effective average coupling of P to the scattered par-
ticles. Then £ can be estimated by constructing a similar model for yp —7™n
at small ‘t | , when Regge cuts are also expected to be very important. Also
in the vector dominance model, yp — 7°p (w exchanged) and forward yp — 7™
(n* exchanged) are related to pN — 7N; thus the pomeron is coupled to the
same external particles and is expected to have comparable strength.
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4., NUMERICAL APPLICATIONS AND DISCUSSION

We shall analyze the data for yp — 7T°p using two different Regge cut
models. In both of them the w pole contribution is taken

A“W&ﬂ K, (8, (D, (@) 727 5w ®-1 @“.1)

with
By =Yo» B1) =7t (4.2)

in accord with most phenomenological applications use

a,(f)=0475+0.86¢, (a,(¢=-0.55)=0).

Each f, l(s ¢) will in addition contain a cut contribution K, (t) f A(cuts) (s, t)

In the first model f+(cuts) will be constructed by taking in (3.4) only one
cut (the term z = 1), which thus represents the overall series in an average
sense; for relatively small |t| this is a usal approach. Then, we shall fix
Ap = 0.3 Gev-2 and, as usual in one-cut models, take p — In s (asymptotic
one-cut form). With L,y (21) ~ 1, (3.4) give:

A 1
760 = vy a (08 - ) €T, (.30
+(eut) 4 _ L LA
1M, t) = vy —— ﬂm) )(wkw,mg< ) . (4.3b)

The value of £ has been determined through the equivalent one-cut model of
yp — 77n [12]; we find
£E=-8.1. (4.4)
+(cut)
We take yq/v, = 1.5. F1nally, we fix A = 3Ay, which gives f] (k o 1)
smoothly varying for all &, < 22 GeV/c. For t sufficiently small the con-
straint (2.10) implies that fo(s t) also receives a contribution

o6t = @17, (4.5)

We shall assume (4.5) for all - <1 GeV?2 ; and this is very important in cal-
culating the assymetry
do, /dt - do”/dt

" do,/dt +do,/di

(4.6)

where o,(0,) the cross section for photons polarized perpendicular (paral-
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FIG.1 FIG. 2

Fig. 1. Calculated differential cross sections at lab. momenta k5, =5, 6, 11 and 16
GeV. Full lines: one-cut model; dashed lines: model with infinite series of cuts.
Data: I from ref.[1]; $ from ref.[2].
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lel) to the production plane. The differential cross section do/d¢ (= do, /d¢
+ do,/dt) is calculated from

1 2.2 d
ir (s - M%) dt 2 IfW,ANAN| 4.7
AN A
YN
and the results are shown in figs. 1 and 2 (solid lines).
The second cut model keeps the complete series in (3.4) with exact fac-
tors p = In s - 3im. We take A = 3\, as before, and Ap = 0.8. The equivalent
infinite cut model applied to yp — 7*n leads to excellent agreement with [12]

£ =-10.5. (4.8)

Here the value 7’1/70 = 2.5 leads to fair agreement (figs. 1 and 2; dashed
lines).

The physical aspects, which are more or less in common to both our
models, can be summarized as follows: At relatively low energy (&, < 10)
the pole contributions F +§w)(s £) control the behaviour of do/d¢; thus, at

=~ _(, 55 we have a dip. "Also, o, contains only exchanges with o = + (i.e.
f"’ and f )and o, only ¢ =- (i.e. f o), away from the dip the pole contribu-
tlons enhance do /dt so the asymmetry R is rather large. At ¢ =~ -0.55,

R also has a d1p, there is, however, still significant contribution to f61 and
fll from the cuts, thus leading to R > 0 event at the dip.

At higher energy the relative importance of the cuts 1ncreases, as can
most easily be seen in the one-cut model (4.3): For 2.8 < < k < 16 GeV the
quantity

Fig. 2. The asymmetry ratio R at k,, = 2.8 GeV. Full line: one-cut model; dashed
line: model with infinite series of cuts. Data: Bellenger et al., Proceedings of the
XIV Intern. Conference on H.E. Physics (Vienna, 1968) p. 3.
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lns ( w Aplns>

remains essentially constant, whereas, with A = %Aw,

(oz Ap lns)

decreases slowly. Thus the Regge cuts gradually take over and the dip is
washed out.

It is of interest that our values of the parameter £ (in (4.4) and (4.8))
are nearly the same as those describing elastic scattering in equivalent
models (e.g. the second of ref. [9] gives £ = -7 for pp — pp and £ = -10
for pp — Pp). This further supports the interpretation of £ as an average
pomeron "coupling™ and allows a significant reduction of the number of free
parameters in Regge cut models of two-body inelastic reactions.
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